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Higher approximations in boundary-layer theory 
Part 3. Parabola in uniform stream 

By MILTON VAN DYKE 
Department of Aeronautics and Astronautics, Stanford University, California 

(Received 5 July 1963 and in revised form 20 November 1963) 

The classical laminar boundary layer on a parabolic cylinder is calculated using 
the Blasius series, with modifications to improve convergence, and supplemented 
by an asymptotic expansion valid far downstream from the nose. The flow due 
to displacement thickness is thereby found with sufficient accuracy to permit 
evaluation of its second-order effect upon the boundary layer near the stagnation 
point. The skin friction and heat transfer are found to be reduced there by 
both displacement and curvature. 

1. Introduction 
The second approximation for Prandtl’s laminar boundary-layer theory was 

studied in Part 1 (Van Dyke 1 9 6 2 ~ )  and applied to leading edges in Part 2 
(Van Dyke 1962b). Thus the second-order solution has in principle been calcu- 
lated for the stagnation point of a round-nosed plane or axisymmetric body, 
and also for a cusped leading edge at  ideal incidence. 

These results are necessarily incomplete, however, in that one of the second- 
order corrections is proportional to the change in inviscid surface speed induced 
at the nose by the displacement effect of the first-order boundary layer. This 
displacement speed is global in nature, depending on the entire course of the 
boundary layer. Therefore completion of the local solution at the nose can be 
undertaken only if the entire body shape is specified. 

At present the displacement speed can be calculated in principle only for 
unseparated flow. It is known in closed form for the semi-infinite flat plate 
(for which it vanishes) and the wedge (Kaplun 1954). It has been calculated 
approximately for the finite flat plate (cf. Part 2) by Kuo (1953). Interest in 
these cases is diminished, however, by the fact that the boundary-layer approxi- 
mation fails in the vicinity of a sharp leading edge. 

We study here what is probably the simplest case of a round-nosed body: 
the parabolic cylinder in a uniform incompressible stream. The first-order 
boundary-layer solution is sought by series expansion, and much of the paper is 
devoted to manipulating the series to provide sufficient accuracy for the 
second approximation. We follow where possible the notation of previous parts, 
and refer to an equation in Part 1 or 2 by giving its number preceded by the 
Roman numeral I or 11. 
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2. First-order boundary-layer solution 
Consider a semi-infinite parabolic cylinder at  zero incidence in a uniform 

stream. As in Part I, choose units such that the nose radius and free-stream 
speed are unity. Introduce parabolic co-ordinates <, 7 according to 

x - $ + i y  = +(,$+iq)2 ( 3 . l a )  

SO that, as indicated in figure 1, the body is described by 7 = 1; then the length 
element dl is given by 

d12 = (c2 + ? f 2 )  (d t2  + dqz). (2.1 b )  

FIGURE 1. Notation for parabola. 

The basic inviscid flow is well known, the stream function being 

r, = a 7  - 1) 

9 ( s ,  0) = <1(1+ c29. 

s = I[[( 1 + E2)* + sinh-l.3. 

(2.2) 

and the surface speed, required for the boundary-layer calculation, is found to be 

(2.3) 

Integrating (3.1 b )  with 7 = 1 gives the curvilinear distance s along the surface as 

(2.4) 

2.1. Blasius series for skin friction 
The boundary-layer solution cannot be calculated in closed form. We adopt 
the approximation of Blasius and Howarth (Schlichting 1960, p. 146), which 
yields an expansion in powers of s starting with Hiemenz’s solution for the plane 
stagnation point. 

The inviscid surface speed must be expanded in powers of s. This is most 
easily done by eliminating < between (3.3) and (2.4) to obtain 

s = 8[ U,/( 1 - U:) + tanh-l U,] 

dU,/ds = (1 - Uf)2. and differentiating to find 

(2.5a) 

(2.5b) 
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Then substituting an assumed series for Ul and equating like powers of s leads to 
the required result 

2 11 392 3548 273,766 
3 15 315 2835 155,925 

V ( s  0) = s--s3+-s5--s7+-s9-- sll+ ... . (2 .5c )  1 7  

We note that this series converges only for s < an = 0.7854, the limitation arising 
from singularities at +ifn in the plane of s regarded as a complex variable. 
According to (2.4) these correspond to singularities at + i  in the plane of 6, 
which arise from the conformal mapping that generates the parabola, and are 
evident as the roots of the denominator in (2.3). 

The formal Blasius series for the boundary-layer solution is now obtained at 
once from the general theory, for which the required universal functions have 
been computed with great accuracy by Tifford (1954). Substituting into equa- 
tions (9.18) and (9.19) of Schlichting (1960) gives for the (dimensionless) stream 
function in the boundary layer 

$1 = sfi(N) - +s3f3(N) + s5[2&5(N) + @ 5 ( W I  

- s7[2'33gg7(N) +Jzgh7(N) +$Jc,(N)] 

+ s9@#qg(N) + A+#h9(N) + ?#kg(N) + $$j9(N)  + wqg(N)] 

1,095,064 28,384 12,848 
-'11 [ 51,975 9 1 m  + 2835 hl l (N)  + 1575 JcllP) 

+ 42-72 9 4 5  ~ 1 1 ~ ~ ~ + ~ ~ ~ 1 ~ ~ ~ + ~ ~ ~ 1 1 ~ ~ ~ + ~ ~ ~ 1 1 ~ ~ ~ ]  + * * .  * (3.6) 

Here N is the boundary-layer variable based upon the distance n normal to the 
surface (Schlichting's 7). From this, using Tifford's values for the functions 
f l ,  f3 . .  .nl,, we find the local coefficient of skin friction as 

~f 
T/$PU; = 2R-3(1*2335877~ - 1 .9318595~~  + 3 .1105082~~  - 5 .028922~~  

+8.14109s9- 13.18662~'~+ ...). (2.7) 

Here R = U, L/v is the Reynolds number based upon the nose radius of the para- 
bola. The first term is Hiemenz's result. 

On the basis of the six numerical coefficients available, it  is possible to make 
reasonable conjectures regarding the convergence of the Blasius series. The 
(unsigned) ratios of successive coefficients in (2.7) are 

0.6380, 0.6211, 0.6185, 0.6178, 0.6174, .... 
It seems likely that these approach = 0.6169, so that the radius of conver- 
gence is s = in. Thus the convergence of the Blasius series is the same as that of 
the underlying expansion (2 .5  c) for the inviscid surface speed. 

2.2. Transformation of Blasius series for skin friction 
We see that the Blasius series is limited not by a physical singularity in the 
boundary layer, but by a mathematical singularity lying on the imaginary axis 
in the plane of s regarded as a complex variable. Under these circumstances it 

10-2 
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is possible to enlarge the range of convergence for positive real s by a change of 
variable. 

One possibility that suggests itself is to recast the series in powers of the para- 
bolic ao-ordinate (, because it is the natural co-ordinate for the problem. This is 
equivalent to expanding in powers of the abscissa x, because on the body t2 = 2x. 
Using (2.4) we find that this gives 

+ R ~ C ,  = 1.23258776- 1*7264282(3+ 2.11376465- 2.4419256’ 

+ 2*73149(9-2*99343~11+ .... (2.8) 

The ratios of successive coefficients are now 

0.7140, 0.8168, 0.8656, 0.8940, 0.9125, ... 
and it seems likely that these approach unity. This means that the series con- 
verges for ( less than unity, which is in accord with the previous observation of 
singularities at  6 = f. i. In  terms of s, however, the radius of convergence has 
been almost doubled, because according to (2.4) ( = 1 corresponds to s = 1.15 
(whereas 6 = & i corresponds to only s = 0.62). 

The singularity that limits convergence now lies a t  - 1 in the complex plane 
of (2 (which is the relevant variable, since the expansion proceeds by alternate 
powers of 0. Thus, as often happens in applied mathematics, an expansion that 
has physical significance only for positive real values of the argument is restricted 
by a singularity elsewhere in the complex plane, often on the negative real axis.? 
Under these circumstances, it may be possible to further enlarge the range of 
convergence by applying an Euler transformation (see, for example, Bellman 
1955). This suggests recasting the series in powers of the new variable 

(2.9) 

An odd function of ( must first be extracted from the series (2.8)) however, 
because the skin friction is an odd function whereas z is even. Far downstream 
on a parabola the skin friction evidently approaches that for a flat plate, because 
the nose radius becomes negligible relative to the dimensions of interest. This 
suggests applying the Euler transformation to Cc,, which gives 

(&R,)* cf = 1.23258772 - 0.4938405~’- 0 . 1 0 6 5 0 5 ~ ~  - 0 . 0 4 7 3 3 1 ~ ~  

- 0 . 0 3 6 7 5 ~ ~  - 0*0172z6 - . . . . (2.10) 

Here R, = U, x/u is the Reynolds number based on the abscissa x measured from 
the leading edge. 

We suggest that in this form the series converges to the correct result every- 
where on the parabola. The most severe test of this conjecture is at z = 1 (corre- 
sponding to ( = s = x = co) where the skin friction should reach the known 

7 An example is Goldstein’s expansion of the Oseen drag of a sphere in powers of 
Reynolds number (Goldstein 1938, p. 492). It has been recast as a rational fraction by 
Shanks (1955), who thereby uncovered an error in Goldstein’s last coefficient. Examination 
of the roots of the denominator in Shanks’s expression suggests that convergence of the 
original series is limited by SL singularity at - 1 in the complex plane of the parameter 
$R natural to Oseen theory. 
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value for the semi-infinite flat plate. There the first six terms of (2.10) decrease 
more rapidly than l/n2, suggesting that the series converges faster than 
Xl/n2 = in2.  (Iam indebted to D. Clutter for thisremark.) The successive partial 
sums are 

R$cr = 1.7431, 1.0447, 0.8941, 0.8272, 0.7894, 0.7651, ... . (2.11) 

It does not appear implausible that these converge to the value for the flat plate, 
namely 0.6641. This conjecture may be supported in a variety of ways. For 
example, plotting the nth partial sum S ,  versus l / n  and extrapolating to the 
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FIGURE 2. Dist-ribution of skin friction over parabola according to 
first-order boundary-layer theory. 

origin gives a value close to that of Blasius. We want to systematize this extra- 
polation for later use. A simple method is to fit a polynomial in 1/n to the last 
few partial sums. With three terms the sum is predicted to be 

S = 18X6-25X5+8X4, (2.12) 

and the use of any more elaborate scheme is scarcely justified. Applied to (2.1 1) 
this yields 0.8554, which differs from the Blasius value by 1.3 yo (whereas the 
sixth partial sum is in error by 15 yo). 

Figures 2 and 3 show the variation of skin friction along the parabola as given 
by successive partial sums of our modified Blasius series (3.10). Also shown is a1: 
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estimate due to Dean (1954), who suggests that Blasius’s solution for the flat 
plate, rewritten in parabolic rather than Cartesian co-ordinates, may be a good 
approximation everywhere; it is seen to be considerably in error. 

Smith & Clutter (1963) have developed a practical numerical procedure for 
solving the incompressible laminar boundary-layer equations, and have applied 
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FIGURE 3. Detail of figure 2 far downstream. 

1 -00 

it  to the parabolic cylinder. Their values of skin friction are compared with the 
results of the present series in table 1 and in figures 2 and 3. Values beyond 
x = 2 are extracted from an unpublished computation kindly supplied by Smith 
& Clutter, and believed by them to have four-place accuracy. The general agree- 
ment tends to confirm the accuracy of both methods. 

Recently, in unpublished work, T. Fannelop has modified the numerical 
procedure developed by Flugge-Lotz & Blottner (1962) for solving the com- 
pressible boundary-layer equations, and has calculated for the present problem 
the values listed in table 2 and plotted in figure 3. On the basis of convergence 
tests he believes the error to be no more than a few digits in the fourth place. 
The two numerical computations do in fact agree to this order over the nose of the 
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Numerical 
x = 462 2 = 6”(1+ 6 2 )  5 terms 6 terms (Smith & 

(nose radii) of (2.10) of (2.10) Clutter) 
0.045 0.0826 0.139080 0.139080 0.13908 
0,120 0.1935 0.31002 0.31002 0.3101 
0.223 0.3084 0.46608 0.46606 0.4661 
0.348 0.4104 0.58498 0.58486 0.5849 
0.491 0.4955 0.6687 0.6684 0.6683 
0.648 0.5645 0.7254 0.7246 0.7242 
0.9655 0.6588 0.7849 0.7829 0.7812 
1.2975 0.7218 0.8121 0.8087 0.8050 
1.644 0.7668 0.8250 0.8200 0.8138 
2,oo 0.8000 0.8306 0.8242 0.8152 
2.85 0.8607 0.833 0.824 0.8074 
4.25 0.8947 0.828 0.816 0.7889 
6.15 0.9248 0.821 0.806 0.7683 
8.775 0.9461 0.814 0.797 0.7487 

12.365 0.9611 0.808 0.789 0.7315 
17.25 0.9718 0.804 0.783 0.7170 
23-96 0.9796 0.800 0.779 0.7052 
33.015 0.9851 0.797 0.775 0.6958 
40.87 0.9879 0.796 0.773 0.6905 
50.55 0.9902 0.795 0.772 0.6861 

TABLE 1. Skin friction on parabola according to first-order boundary-layer 
theory ; values of Ri cf. 

Cf Rkc, 
2 (Fannelop ) z (Fannelop) 

0.85903 0.80555 0.95512 0.74051 
0.86931 0.80190 0.96004 0.73467 

0.72841 0.88095 0.79699 0.96498 
0.89075 0.79217 0.97012 0.72144 
0.90099 0.78640 0.97499 0.71435 
0.90951 0.7 8 100 0.97703 0.71122 
0.92052 0.7731 3 0.97912 0.70791 
0.93014 0.76536 - - 
0.94058 0.75586 - - 
0.95034 0.74587 - - 

TABLE 2. Skin friction on parabola according to  first-order 
boundary-layer theory. 

parabola. Farther downstream, however, Fannelop’s values lie consistently 
higher than those of Smith & Clutter by 0.2 or 0.3 yo. 

3.3. Comparison with Giirtler’s series 
Gortler (1957) has proposed a new series that is expected to be superior to the 
Blasius series because the variables are adapted to the particular problem at 
hand. For the parabola, Gortler’s variables f ,  U ,  S, and are found to be given in 
terms of our 5 by 

_ -  

(2.13a) 
= g, a = !g( 1 + f2 ) -& ,  g = ( 1  + 5 2 ) - 9 ,  

p (g)  = (1  + 3E)-1. 
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Using these relations together with Gortler’s equation (1 19), and numerical 
values of the universal functions taken from the abridged tables (Gortler 1955), 
gives 

+( 1 + 5’) R ~ c ,  = 1.2325875 - 0.493840g3 + 0.387335p - 0*328162(’ 

+0~289567f;9-O*262037~11+ .... (2.13b) 

This differs from our intermediate result (2.8) only by the extraction of a factor 
(1 + c2), and comparing the two series gives complete agreement, within the 
accuracy available, between the numerical coefficients derived from the two 
different sources. 

If the radius of convergence is unity for (2.8), then i t  is also unity here, which 
seems to be plausible. Thus it appears that Gortler’s new series, though indeed 
somewhat superior to the classical Blasius series, can for the parabola be further 
significantly improved by an Euler transformation. It is interesting to ask 
whether a general theory analogous to Gortler’s might be developed that for the 
parabola would provide the infinite radius of convergence of the present ad hoe 
method. 

2.4. Stream function and displacement thickness 
In  view of the success of the Euler transformation for the skin friction, we apply 
it now to the complete stream function in the boundary layer. We work hence- 
forth only with parabolic co-ordinates, for which an appropriate magnified 
boundary-layer variable H is introduced in place of 7 by setting 

H = Rg(7- 1). (2.14) 

Using (2.1) shows that this is related to the N of Part 1 and (2.6) by 
N = ( 1 + t 2 ) * H .  (2.15) 

In  the flat-plate solution, which should hold asymptotically far downstream, 
the stream function $1 in the boundary layer is proportional to t. This suggests 
that the Euler transformation is to be applied to Thus with the aid of (2.4) 
and (2.15) we transform the Blasius series (2.6) into 

$l/t = f l ( H )  + ( i f 1  + wf; - V 3 ) Z  + (+&fl+ mf; + w y ;  - 4f3 

- $Hf A +‘$g5 + $4,) z2 + . .. (2.16) 

and anticipate that this series converges over the entire parabola. Here terms up 
to 25 are known, but have been omitted in view of their complexity, and because 
we do not need the complete stream function in the boundary layer but only its 
displacement thickness. 

The displacement effect of the boundary layer depends upon the behaviour 
of $l for large values of the argument N or H .  The asymptotic forms of the uni- 
versal functions can be extracted from Tifford’s tables and substituting them into 
(2.16) gives, in the notation of (I, 3.273), 

- Y,(s, 0) = lim (N3[/1N - = lim (H$’lN - $1) 
N - t m  H-CC 

= ((0.647900 + 0*183914~+ 0 . 0 9 4 6 5 ~ ~  

+ 0 . 0 5 8 6 6 ~ ~  + 0 . 0 3 9 9 ~ ~  + 0.028625 + . . .). (2.17) 
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As a further test of the conjecture that (2.16) converges everywhere on the 
parabola, consider the displacement effect infinitely far downstream (at z = 1). 
Successive partial sums of (2.17) give for the displacement constant pi (cf. 
(II,4.5)).  

pi = 0.6479, 0.8318, 0.9265, 0.9851, 1.0251, 1.0537, .... (2.18) 

Applying (2.12) to the last three values yields 1.2199, which differs by only 
0.3 yo from t,he known value of 1.21677 for the flat plate. 

2.5. Inverse Blasius series 

The representation of the first-order boundary-layer solution by the modified 
Blasius series (2.16) appears to be suitable for our purposes. However, it is of 
interest to examine in more detail the behaviour of the solution far downstream. 
We consider a supplementary expansion for large rather than small distances 
from the nose, which may be termed an ‘inverse Blasius series ’. 

The first step would be to expand the inviscid surface speed (2.3) asymptotic- 
ally for large s, which gives 

q ( s ,  0) N 1 - as-, - &s-2log 8s + 228-2 + . . . . (2.19) 

However, we again expand instead for large t, because it is a more natural co- 
ordinate than s. Then (2.3) shows that the surface speed is analytic at t = rn; 
the logarithms in (2.19) arise simply from geometry. Nevertheless, they serve 
as a reminder that logarithmic terms are often required in asymptotic expansions 
of this sort to ensure exponential decay of vorticity through the boundary layer 
(cf. Stewartson 1957). We therefore assume that the stream function can be 
expanded for large 5 as 

(2.20) 

Transforming the first-order boundary-layer problem (I, 4.9) to parabolic 
$1 N two + t-l 1% t2SII(fI) + t-lfI1m + . * .  * 

co-ordinates using (I, 4.22a) gives 

(1+t2)  ( $ ~ H H H + $ ~ ~ $ ~ H H - $ ~ H $ ~ ~ H ) + ~ ( $ ~ H +  1)  = 0, (2.21a) 

$l(t? O) = $ i H ( t ,  O) = $ l H ( t ,  = t* (2.21b) 

We have already solved this problem by series for small 5. For large 5, substitut- 
ing the assumed expansion (2.30) and equating like functions of gives for the 
leading term 

f;”+fIf;( = 0, f I (0 )  = f i ( O )  = 0, fi(C0) = 1. (2.22a) 

As anticipated, this is the problem (II,4.4) for t,he semi-infinite plate, with the 
Falkner-Skan normalization, so that 

f;’(O) = a, = 0.469600, f l ( H )  N H-Pl ,  = 1.21677, 

f;’(H) N ylexp [-4(H-/31)2], y1 = 0.33054. ( 2 . 2 2 b )  

For the second term, involving the logarithm of 5, one finds the homogeneous 

(2.23) 
problem 

SYI +fISI”I + 2f;SL -f;’SI,  = 0, S d O )  = SL(0) = &(m) = 0. 
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The solution would vanish if it were unique; but Alden (1948) showed in his 
pioneering attack on the third approximation for the flat plate that (Hf; - fI) is an 
eigensolution, so that 

where A ,  is a constant to be determined. Then for the third term in (3.20) the 
problem becomes 

g11m = Al(HX - fA  (2.24) 

f;; +fI f;; + 2f; f;I -ffn = fi2 - 1 + 2 4  fI  f;', 
fII (0) = fao)  = f;I(a) = 0. 

(2.25a) 

(2 .25  b )  

This equation, with a different right-hand side (and different normalization), 
was encountered by Alden. His analysis shows that the behaviour of the solution 
for small and large H is given by 

f;m = Clf;'(O) = ClE,, (2 .26~)  
9 
Y 

-+ . . .] + exp, (2.26 b) 
H-PI (H-P1I2 

where 'exp' stands for exponentially small terms. Here C, is the coefficient of 
the eigensolution (Hf;  -fI) that appears also as a part of fr1, and a and b are 
determinable constants. An unpublished analysis of S. Kaplun yields, in the 
present problem, 

b = sZfI( 1 -fi2) dH - A,. (2.26~) 

Now the bracket in (2.26b) would contribute first-order vorticity that decays 
only algebraically through the boundary layer. To insure exponential decay, 
its coefficient b must vanish. Such a requirement is familiar from the Falkner- 
Skan solutions for the boundary layer in a retarded stream, where Hartree 
(1937) required exponential decay in order to single out a unique solution. Thus 
the logarithmic term in (2.20) plays an essential role. A rough numerical computa- 
tion of the integral in ( 2 . 2 6 ~ )  yields A, = 0.601. 

L.Devan has pointed out to the author a simpler derivation of this result. 
Multiplying ( 2 . 2 5 ~ )  byfI and integrating, using (2.22a), gives 

0 

fI ffI+ CfI" -f;)f;I +f;'fII = logf;' + 4fI"f; 
+ ifI f;' - if;2 + A,(f;2 f_ 2f1 f;) + k,. (2.27) 

Evaluating this at  H = 0 using the boundary conditions gives 

k1 = -logf;'(O) = -1oga1; 

and then evaluating it again at  H = a, using ( 2 . 2 2 b )  and assuming that fi1 
decays exponentially, yields 

A ,  = *+log (al/yl) = 0.60115. (2.28) 

Here we have taken advantage of the accurate numerical value 

log (a,/yl) = 0.35115 

that was computed by Spence (1960) in a different problem. 
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The coefficient Cl of the eigensolution remains unknown within the framework 
of the present asymptotic analysis. Physically, this indeterminacy represents 
ignorance of the location of the effective origin of the abscissa for the basic 
flat-plate solution. The same difficulty is encountered in the third-order boundary- 
layer solution for the flat plate (Goldstein 1960, Imai 1957), and in other bound- 
ary-layer problems (e.g. Stewartson 1957, 1958; Traugott 1962). 

The eigensolution just discussedis only the first of an infinite sequence (Stewart- 
son 1957). The higher-order eigensolutions have no such simple physical inter- 
pretation as the first, because they involve non-integral powers of 6. Libby & 
Fox (1962) have calculated the next four exponents as - 1.887, -2.818, - 3.8, 
and - 4.74. Thus the next two terms in the inverse expansion (2.20) are eigen- 
solutions of the form t-1.888'fIII(H) and ~-"'"l"fIV(H), each introducing another 
unknown coefficient. These are followed by conventional terms of order ,5-3 log 2<, 

$-310g 5, and <-3, then by two more eigensolutions with exponents - 3.8 and 
- 4.74, and so on. 

2.6. Joining of direct and inverse Blasius series 

In  the present problem it is possible to evaluate approximately the constant C, 
for the first eigensolution, thanks to the infinite radius of convergence of the 
series from the nose. The direct and inverse series can be joined by a process that 
is neither the precise matching of the method of inner and outer expansions 
(Part l), nor the crude numerical patching to be employed later. It is almost the 
process of analytical continuation, except that our inverse series is not analytic. 
We find it convenient to join the two series for the skin friction. 

According to (I, 4.13) the inverse Blasius series (2.20) gives for the skin- 
friction coefficient 

(@,)Bc, N 0~469600[1+0~60115(-21~g(2+(c1-1)~-2]. ( 2 . 2 9 ~ )  

For purposes of comparison we recast this in terms of the variable z = t2/( 1 + g2), 
and transfer the logarithmic term to the left-hand side 

(2.29b) 

We now evaluate this same expression using the modified Blasius series (2.10). 

(l-z)log(l-z)-l = z - ~ ~ ~ - + z ~ - - + ~ 2 ~ - . . .  (2.30) 

(@,)*c, -0.28230(1 -z)log(l-z)-l N 0*469600[l+(C1- l ) ( l - ~ ) ] .  

The expansion 

converges for 0 < z < 1, so that the desired result 
(=&R,)* c,- 0*28230 (1 - Z )  log (1  - z ) - ~  = 0.950288~ - 0 . 3 5 2 6 9 0 ~ ~  

- 0 . 0 5 9 4 5 5 ~ ~  - 0 . 0 2 3 8 0 6 ~ ~  - 0 . 0 1 2 6 4 0 ~ ~  - 0.007759 - . . . (2.31a) 

converges up to z = 1. Expanding it formally for small (1 - z )  gives 
(&R,)* c,- 0.28230 (1 - X) log (I - z ) - ~  N (0.950288 - 0.353690 - 0.059455 

- 0.023806 - 0.012640- 0.00775 - . . .) 
+ ( - 0.950288 + 0.705380 + 0.178365 + 0.095224 + 0.063200 

+ 0.04650-t ...) (1 -2) + .. .. (2.31b) 

This result is only asymptotic, because although the two subseries in parentheses 
appear to converge, that for the next term in (1 - z ) ~  would not until a term in 
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(1 - x ) ,  log (1 - z)-l  was extracted. The first subseries is again presumably 
approaching the flat-plate value. We need the value of the second, whose con- 
vergence is more marginal. Applying (2.12) to the last three partial sums yields 
0.42) and we adopt this estimate while recognizing that the second digit is 
uncertain. 

Comparing (2.29b) and (2.31b) then determines the missing coefficient C, 
according to 

C, = 1 + ( - 0.950288 + 0.705380 + 0.178365 + 0.095324 + 0.063200 

+ 0.04650+ ...)/ 0.469600 z 1.89. (2.32) 

The skin friction is now given by the inverse Blasius series as 
R$cf N 0 ~ 6 6 4 1 1 + 0 ~ 3 9 9 2 3 ( 1 - ~ ) 1 0 g ( 1 - ~ ) - ~ + 0 ~ 5 9 ( 1 - ~ ) +  _... (3.33) 

The results of using one, two and three terms of this series are shown in figure 3. 
The constant C, can also be evaluated approximately by patching the skin 

friction far downstream with the numerical results. Equating (2 .29b)  to the 
values of Smith & Clutter at  the last six points listed in table 1 gives C, = 1.66, 
1.68, 1.69, 1-67, 1.64, and 1.59. Patching with t,he results of Fannelop at the last 
six points in table 3 gives C, = 1.72, 1.75, 1-78) 1.81, 1.82, and 1.83. Together 
with the value estimated by joining the two series, these results indicate that C, 
lies somewhere between 1.6 and 1.9. 

3. Second-order boundary-layer solution 
Of the second-order effects enumerated in Part 1, only (longitudinal) curvature 

and displacement are present here. In  order to apply existing results for those 
effects at  the nose, we need only calculate the change in inviscid surface speed 
induced there by the first-order displacement thickness. 

3.1. Flow due to displacement thickness 
The boundary layer alters the outer inviscid flow by the order of its displace- 
ment thickness, so that the stream function has the outer expansion 

'P1+R--~'Y2+.. . .  (I) 3.3) 

Here YP, must satisfy Laplace's equation according to (I, 3.12)) give vanishing 
velocity far upstream, and assume at the body the value in (2.17). 

This potential problem can be solved formally by inspection. The first term in 
(2.17), a multiple of t, is a harmonic function as it stands, with proper decay at 
infinity, and can therefore be taken over directly. The subsequent terms are not 
harmonic, and must be replaced by appropriate harmonic functions that reduce 
to them at 7 = 1. The required functions are combinations o f t  with multipoles 
at  the origin: the real (imaginary) parts of odd (even) negative powers of (5 + i7). 
Thus the flow due to displacement thickness is found to be represented formally 
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The subsequent three terms are known but have been omitted here because of 
their increasing complexity; we need only the corresponding surface speed, which 
is found from (I, 3.10) as 

U~(S, 0) = ( 1  + g2)-& YZ1([, 1) = - [( 1 + [')-g [0-367828 + 0*094655( 1 + 42) 

+ 0.05866($ + 2z+ 62,) + 0*03996(Q + 22 + 3z2+ 8x3) 

+ 0-0386($% + gz +- pzz + 4z3 + 10z4) + .,.I, (3.2) 
This series appears to diverge for [ greater than unity (z  > *). Some reflexion 

suggests recasting it to Ieave only a factor [/( 1 + 62) outside the bracket, and it is 
reassuring to find that the result then appears to converge for all 6. However, 
(3.3) suffices as it stands to give the first non-zero term in the expansion (11, 
3.10) for the displacement speed near the nose as 
cLl = - (0.367828+ 0.094655 + 0.04399 + 0.02497 + 0.0157 + ...) M - 0.61. (3.3) 

Here successive terms again decrease faster than lln2, and the estimate given for 
the sum is the result of applying (2.12). 

3.2. Second-order skin friction and heat transfer at nose 
The value of U,, was the missing element needed to complete the second-order 
boundary-layer solution near the nose. Substituting it into (11, 3.36), together 
with U,, = 1 from ( 2 . 5 c ) ,  gives for the coefficient of skin friction 

In this section only, all symbols denote actual dimensional quantities, so that 
s /L  is the distance from the stagnation point measured in nose radii. Curvature 
contributes - 1.91 to the second coefficient and displacement - 1-12; thus both 
second-order effects act to reduce the skin friction near the nose, curvature being 
twice as effective as displacement. Higher powers of s could be found by con- 
tinuing the second-order Blasius series, whereas terms of relative order R-I 
would come from the third-order boundary-layer solution. 

Similarly, for Prandtl number 0-7 the low-speed heat transfer at  the stagna- 
tion point is found from (11,3.37) as 

+R*c, = (1*23%588 - 3.03R-3) s/L + O(s3, R-l). (3.4) 

q/k = (L i / v )& (Two - To) [0*495867 - 0.279R-3 + O(R-')]. (3.5) 
In  this case displacement contributes - 0.151 to the second-order term and curva- 
ture only - 0.128. 

3.3. Discussion 
Our solution for the parabola has no direct application to the puzzle of the semi- 
infinite flat plate, where near the leading edge the flow is unknown, and far 
downstream undetermined constants begin to appear in the third approximation 
of boundary-layer theory. We cannot let our nose Reynolds number R tend to 
zero, because the analysis is asymptotic for large R, valid only if a well-defined 
boundary layer exists beginning at  the stagnation point. 

Nevertheless, it is remarkable that second-order effects reduce the skin friction 
near the nose. This trend is in the direction of the Oseen approximation, for 
which Wilkinson (1955) finds the skin friction on the parabola to be 

cf = 2 d  R,['/( 1 + [') = 2R* [O*798~ + 0(s3)]. ( 3 4  
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Near the stagnation point this gives about two-thirds of the boundary-layer 
value of Hiemenz. Far downstream, on the other hand, it exceeds the Blasius 
value by 70 yo; the Oseen approximation does not apply to a semi-infinite plane 
body even if the nose Reynolds number is small. 

The displacement effect was calculated here by something of a tour de force, 
using the Euler transformation. One cannot expect equal success for all bodies. 
It might be possible, however, to accept the approximation of the K&rm&n- 
Pohlhausen integral method; and it would be useful to compare that result with 
the present solution. 

A primitive version of this work, in which the displacement effect was ignored, 
was presented in 1956 (Van Dyke 1957). The analysis was revised during the 
summer of 1960 at the Lockheed Missiles and Space Company (Van Dyke 1960). 
The present paper was prepared under Air Force Office of Scientific Research 
Grant AFOSR-96-63. The author is indebted for advice and help to D. Clutter, 
L. Devan, T. Fannelop, S. Goldstein, P. A. Lagerstrom, R. Mark, N. Rott, and 
A.M. 0. Smith. 

Corrections to previous parts 

Part 1: Page 165, equation (2.12) should read: cos6 = - r l r g .  

Page 167, two lines below ( 3 . 1 1 ~ ) :  replace I?, by B;. 

Page 170, line 7 should read: m = 1, p = 2. 

Part 2: Page 484, equation (2.23): replace 0.48296 by 0.15831 and 0.50194 by 

Page 484, line 3:  Kemp’s solution is found to agree with ours when 
put in the same terms. His parameter A is not to be identified with 
the gradient U,, of inviscid surface speed, but depends upon the 
vorticity parameter R of (2.27) according to U,, = A(  1 -/3, R). This 
is easily seen by calculating the outer flow that matches Kemp’s 
solution according to the principle (I, 3.24). Consequently his results 
reduce for small L2 to those of our $ 2.4. 

Page 485, equation (2.28): replace 0.96592 by 0.31661 and 1.00388 by 

Page 489, equation (3.36): close square bracket after U,”,). 

0.17079. 

0.34158. 
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